
Generating workflow models from OWL-S service descriptions with a
partial-order plan construction

Bochao Wang
Australian National University

u4465961@anu.edu.au

Armin Haller, Florian Rosenberg
CSIRO ICT Centre

firstname.lastname@csiro.au

Abstract

In this work we construct partial order plans from a pool
of atomic services described in OWL-S. We make extensions
to Partial Order Planning to allow multiple conditional ef-
fects in action definitions. The purpose is to handle the un-
certain behavior of Web services with incomplete initial in-
formation. We post-process the partial order plan to auto-
generate a workflow model. We developed a method to iden-
tify a subset of workflow patterns from the solution plan to
create a workflow diagram.

1 Introduction

The Service-oriented computing paradigm has enabled
an increasing number of companies to deploy and remotely
access functionality exposed as Web service. However, the
true potential of a distributed infrastructure can only be
reached when existing services can be composed into more
complex services to meet the requirements of a user au-
tomatically. In this paper we introduce a semi-automatic
service composition framework that produces a workflow
plan from semantically annotated Web service. In partic-
ular, we propose extensions to Partial Order Planning to
handle uncertain behavior of Web services with incomplete
initial information. The planner builds a partial order plan
that splits parallely, conditionally and also joins. Similar
to [9], we use a forward planning technique from an initial
state of the world. Then, we post-process the plan produced
by the planner to auto-generate a workflow representation.
We develop a method to identify a subset of workflow pat-
terns from the solution plan to create a workflow diagram.
The resulting graphical workflow diagram can be used by a
designer to get an intuitive understanding of the high level
business logics of the process or can be used to be directly
mapped to an operational business modeling languages such
as WS-BPEL.

2 Constructing a Partial Order Plan

In our approach we make adaptations to Partial Order
Planning for service composition and refer to the developed
planner as SC-APOP. Our planner is similar to basic POP
such as [8], with a major difference - action. We enable
multiple conditional effects. The output solution also in-
cludes a Context-Table, in addition to a partial order plan.
The definitions of the planning domain are as follows:
Definition (Planning Domain): A Planning Domain is a
tuple D = 〈S,A〉, where:

• S is a set of predicates;

• A is a set of actions.

Definition (Planning Problem): A Planning Problem α is
a tuple α = 〈D, I,G〉, where:

• D is a planning domain.

• I,G are initial and goal states respectively. They are
both conjunction of predicates.

Definition (Predicate): A Predicate, S is a string name and
a set of variables or constants, each of which is of a type.
Definition (Action): An action A is a tuple 〈P,C,E〉,
where:

• P is the precondition of the action. P is a conjunction
of predicates, Si ∧ ... ∧ Sj . P can be null.

• C is a set of secondary preconditionsCi, i = {1, ..., l}.
Each secondary precondition Ci is a conjunction of
predicates, Si ∧ ... ∧ Sj . Ci has to be incompatible
with Ck where i, k ∈ {1, ..., l} and i 6= k. C can be
null.

• E is a set of effects Ei, i = {1, ..., l}. Each effect Ei

is a conjunction of predicates, Si ∧ ... ∧ Sj . Ei has
to be incompatible with Ek where i, k ∈ {1, ..., l} and
i 6= k.

• Ci and Ei are a pair of secondary precondition and
conditional effects.

An action represents an atomic service. As indicated in the
above definition a service may have multiple conditional ef-
fects. We restrict a precondition P , secondary precondition
Ci and effectEi to conjunctions of predicates. Precondition
P and/or secondary precondition Ci, i = {1, ..., l} can be
empty. We further define the notion of compatible and in-
compatible. Two predicates S1, S2 are compatible (incom-
patible) iff the they can (not) hold simultaneously. In ad-
dition, two sets of predicates X,Y are compatible iff each
predicate in X is pairwise compatible with each predicate
in Y .
Definition (Set of Steps): A step a is a ground action when
it appears in a plan. We use T to denote a set of steps.
Definition (Causal Link): A causal link is a tuple 〈f, S, h〉,
denoted by f S→ h, where S is a predicate, f is a step name
that has S in its effect Ei, h is a step name that has S in
its precondition P or secondary precondition Cj . A causal

link f
S→ h indicates that executing step f establishes a

precondition of h. We say f is an establisher of h [11].
Definition (Threat): A step name q is called a threat to a
causal link f S→ h if q is a step other than f and h, that has
¬S in its effect.
Definition (Ordering Constraint): An ordering constraint
f ≺ h indicates that step f must precede h in the plan. Each
causal link is associated with an ordering constraint.
Definition (Partial Order Plan): A Partial Order Plan π is
a tuple π = 〈L,O, T 〉, where:

• L is a set of causal links;

• O is a set of ordering constraints;

• T is the set of steps.

Definition (State Context): State Context is a set of ground
predicates. A state context of an action represents the set of
predicates that hold while the action begins to execute.
Definition (Context-Table): A context-table CT keeps the
state context for each step a. We denote the context of a by
CT (a).

Basic POP works by iteratively adding steps, causal
links, ordering constraints and binding constraints until the
plan is complete [8]. It does not restrict the order of plan-
ning as long as a complete plan is found. SC-APOP adopts
forward, ordered planning in which steps are included into
the plan in an order of some valid linearization of the plan
to be completed later. The implementation:

1. keeps a closed list for action steps that has been already
“executed”. The closed list is the set of steps T of the
plan π.

2. keeps an open list of steps. An element is inserted if all
its preconditions can be established by steps that have
been already in the plan. If a candidate action to be ex-
panded has any precondition where we can not find an
establisher in current π, the candidate shall be reached
and added at a later stage when its other establishers
are in the plan.

Figure 1 shows our algorithm in detail. We assume a set
of ground predicates and actions are created and filtered be-
forehand. Line 8 is the goal test. Line 12-18 checks whether
the establishers of a candidate step are in the current plan.
Line 20-24 insert causal link and ordering constraints for
the new step. Then threats are resolved by promotion or
demotion [10] in line 26. We then update the context-table
in the sub-routine UPDATE-CONTEXT-TABLE(), where
the context of the new step is the union of that of its estab-
lishers, as shown in line 41,43. In Line 36, if we can no
longer include more steps into the plan while the dummy
END action is still not found, the planning problem has no
solution. After a new step is included into the plan with all
associated causal links, we resolve all threats in the current
plan immediately.

3 Constructing Workflow Diagrams

In our approach to map a partial order plan produced by
SC-APOP to a set of workflow patterns [15] we address
the five basic control flow patterns - sequential, parallel-
split, synchronization, exclusive-choice, simple-merge and
multiple-choice, synchronization-merge of the advanced
branching and synchronization patterns.

Convert Partial Order Plan to DAG: The partial order
plan generated from SC-APOP can be seen as a Directed
Acyclic Graph (DAG). Any valid partial order plan can be
converted straightforwardly into a DAG 〈V,E〉 where: V is
a set of vertices and E is a set of edges. Each vertex vi cor-
responds to an action step ti and each edge ej corresponds
to an ordering constraint oj of the conditional partial or-
der plan. There is a source-vertex o that corresponds to the
START step and a sink t node that corresponds to the END
step.

Transitive Reduction: The method of mapping a partial
order plan to the set of identified workflow patterns treats
each ordering constraint as the control flow of the workflow
diagram/patterns. To reduce the complexity of the workflow
diagram to be generated while preserving the necessary ex-
ecution flow, we first perform a Transitive Reduction [1] on
the direct graph converted from the plan.

Post-Processing Output: On completion of the post-
processing procedure, another graph (a workflow diagram)
is generated with the following vertex-types.

Definition (Vertex-Type): Vertex-Type is an attribute
associated with each vertex. Its ranges are parallel-split,

2

0: SC-APOP(α)
1: Let START be a0, and manually specified actions

with no preconditions be al, ..., am
2: OPEN.enqueue(a0, al, ..., am)
3: π.T = π.T ∪ (a0, al, ..., am)
4: Create empty context-table CT
5: CT(a0)= I
6: WHILEOPEN 6= ∅
7: ax = OPEN.dequeue()
8: IF ax == END, report success and return π
9: FOR each predicateSu in each conditional effect

Ei of ax
10: FOR each action ay ∈ A
11: FOR each predicateSv in each secondary

precondition and preconditionEj of ay
12: IFSu, Sv are same predicate and consistent
13: allPreEstablishable = true
14: FOR each predicateSw in the precondition

P and each secondary precondition
Ck of ay

15: IF there does not exist a causal link

of the form az
Sw→ ay in π.L

16: allPreEstablishable = false
17: ENDIF
18: ENDFOR
19: IF allPreEstablishable
20: FOR each predicate

Sw in the precondition
P and each secondary precondition
Ck of ay

21: FOR each causal link of the form

az
Sw→ ay in π.L

22: π.L = π.L ∪ (az
Sy
→ ay)

23: π.O = π.O ∪ (az ≺ ay)
24: ENDFOR
25: ENDFOR
26: Resolve threats
27: Call UPDATE-CONTEXT-TABLE()
28: OPEN.enqueue(ay)
29: π.T = π.T ∪ ay
30: ENDIF
31: ENDIF
32: ENDFOR
33: ENDFOR
34: ENDFOR
35: ENDWHILE
36: RETURN Failure

37: UPDATE-CONTEXT-TABLE()
38: FOR each ordering constraint of the form ar ≺ ay

where ar ∈ π.T
39: IF CT(ay) and CT(ar) are incompatible
40: Let Ss, St be any incompatible predicates in

CT(ay)∪CT(ay)
41: CT(ay)=CT(ay)∪CT(ar)−Ss − St
42: ELSE
43: CT(ay)=CT(ay)∪CT(ar)
44: ENDIF

45: IF ar ≺ ay is also a causal link ar
So→ ay

46: CT(ay)=CT(ay)∪ preconditionP of ay
47: CT(ay)=CT(ay)∪So
48: ENDIF
49: ENDFOR

Figure 1: SC-APOP algorithm

synchronization, exclusive-choice, simple-merge, multiple-
choice, synchronization-serge and action-step.

Definition (Post-Processing Output): Post-Processing
Output is another DAG 〈V ′, E′〉 where:
V ′ is a set of vertices and E′ is a set of edges. Each

v ∈ V ′, v has a vertex-type. 〈V ′, E′〉 is any valid workflow
diagram.

3.1 Post-Processing Procedure

1. Convert Partial Order Plan to DAG and remove the
sub-graph irrelevant to the goal by backward search
for relevant edges from the sink to the root.

2. Perform transitive reduction to the DAG.
3. For each vertex vk:

(a) Recognize parallel-split. Suppose the recognized
parallel-split is fk ≺ hi, i = {1, ..., j}. Remove edges
(fk, hi), i = {1, ..., j}. Add vertex v of type parallel-split.
Add edges (fk, v) and (v, hi), i = {1, ..., j}. Replace fk by
v in ordering constraints fk ≺ hi, i = {1, ..., j}.

(b) Recognize synchronization. Suppose the recognized
synchronization is hi ≺ fk, i = {1, ..., j}. Remove edges
(hi, fk), i = {1, ..., j}. Add vertex v of type synchroniza-
tion. Add edges (v, fk) and (hi, v), i = {1, ..., j}. Replace
fk by v in ordering constraints hi ≺ fk, i = {1, ..., j}.

(c) Recognize exclusive-choice. Suppose the recognized
exclusive-choice is fk ≺ hi, i = {1, ..., j}. Remove edges
(fk, hi), i = {1, ..., j}. Add vertex v of type exclusive-
choice. Add edges (fk, v) and (v, hi), i = {1, ..., j}.
Replace fk by v in ordering constraints fk ≺ hi, i =
{1, ..., j}.

(d) Recognize simple-merge. Suppose the recognized
simple-merge is hi ≺ fk, i = {1, ..., j}. Remove edges
(hi, fk), i = {1, ..., j}. Add vertex v of type simple-merge.
Add edges (v, fk) and (hi, v), i = {1, ..., j}. Replace fk by
v in ordering constraints hi ≺ fk, i = {1, ..., j}.

(e) Recognize multiple-choice. Suppose the recognized
multiple-choice is fk ≺ hi, i = {1, ..., j}. Remove edges
(fk, hi), i = {1, ..., j}. Add vertex v of type multiple-
choice. Add edges (fk, v) and (v, hi), i = {1, ..., j}.
Replace fk by v in ordering constraints fk ≺ hi, i =
{1, ..., j}.

(f) Recognize synchronization-merge. Suppose the rec-
ognized synchronization-merge is hi ≺ fk, i = {1, ..., j}.
Remove edges (hi, fk), i = {1, ..., j}. Add vertex v of type
synchronization-merge. Add edges (v, fk) and (hi, v), i =
{1, ..., j}. Replace fk by v in ordering constraints hi ≺ fk,
i = {1, ..., j}.

4 Related work and Conclusion

In this work we made extensions to Partial Order Plan-
ning (POP) to allow multiple conditional effects in action
definitions. The algorithm is able to keep the business or
system state for each service in context tables, which are
used at the next stage when recognizing workflow patterns.
A very similar planning technique, called Hierarchical Task
Network (HTN) planning, was shown to have various ad-
vantages over the other AI planning techniques because of
its scalability and concurrency [5]. Using HTN planner
SHOP2 for web service composition was reported in [13].
The basic HTN planning algorithm are similar to POP with
one important exception that HTN operations can be both
primitive actions, which corresponding to the usual actions
in the POP, and non-primitive actions [6]. Although HTN
planner enables a hierarchical description of composite ser-
vices, the assumption made by this mechanism is that the
service has already been composed, which makes no con-
tribution to the notion of automatic composition. State tran-
sition systems are another AI planning technique that has
been used for Web service composition [3; 14; 12].

Alternative approaches to partial order planning are for
example Planning Graph Analysis [4] and Planning as Sat-

3

isfiability [7]. The use of such planning approaches for Web
service composition is proposed in [16] where the authors
present an algorithm based on planning graph model and a
set of strategies for pruning redundant Web Services. Web
service composition involves various challenges in a num-
ber of aspects that are not addressed in our work. For exam-
ple, [2] address the issue of inexact terms in semi-automated
web service composition.

Bibliography

[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transi-
tive Reduction of a Directed Graph. SIAM Journal on
Computing, 1(2):131–137, 1972.

[2] R. Akkiraju, B. Srivastava, A.-A. Ivan, R. Goodwin, and
T. Syeda-Mahmood. SEMAPLAN: Combining Plan-
ning with Semantic Matching to Achieve Web Service
Composition. In Proc. of ICWS 2006, pages 37–44,
2006.

[3] P. Bertoli, M. Pistore, and P. Traverso. Automated compo-
sition of Web services via planning in asynchronous
domains. Artif. Intell., 174:316–361, March 2010.

[4] A. L. Blum and M. L. Furst. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence,
90(1):1636–1642, 1995.

[5] K. S. M. Chan, J. Bishop, and L. Baresi. Survey and
Comparison of Planning Techniques for Web Ser-
vices Composition. Technical report, Univ. of Preto-
ria, 2007.

[6] S. Kambhampati. A Comparative analysis of Partial Order
Planning and Task Reduction Planning. SIGART Bull.,
6:16–25, January 1995.

[7] H. Kautz and B. Selman. Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search. In Proc. of
AAAI-96, pages 1194–1201, 1996.

[8] D. Mcallester and D. Rosenblitt. Systematic Nonlinear
Planning. In Proc. of AAAI-91, pages 634–639, 1991.

[9] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman. SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research, 20:379–404, 2003.

[10] J. S. Penberthy and D. S. Weld. UCPOP: A Sound, Com-
plete, Partial Order Planner for ADL. pages 103–114.
Morgan Kaufmann, 1992.

[11] M. A. Peot and D. E. Smith. Conditional nonlinear plan-
ning. In Proc. of ICAP 92, pages 189–197, 1992.

[12] M. Pistore, P. Roberti, and P. Traverso. Process-level com-
position of executable Web services: on-the-fly versus
once-for-all composition. In Proc. of ESWC05, pages
62–77, 2005.

[13] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN
planning for Web Service composition using SHOP2.

Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4):377–396, October 2004.

[14] P. Traverso and M. Pistore. Automated composition of
semantic Web services into executable processes. In
Proc. of ISWC 2004, pages 380–394, 2004.

[15] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns.
14(1):5–51, 2003.

[16] X. Zheng and Y. Yan. An efficient syntactic Web service
composition algorithm based on the planning graph
model. In Proc. of ICWS, pages 691–699, 2008.

4

